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A method based on the statistical analysis of estimates of the uncertainty of the input parameters of a predic-
tion model is proposed. Distributions of expected data on the time of attainment of maximum concentrations
of radionuclides were obtained by the Monte Carlo method for a concrete model of radionuclide migration in
porous media. It is shown that, for this model, the logarithm of maximum concentrations of radionuclides and
the time of their attainment obey the uniform-distribution law.

At present, much thought is being given to the analysis of errors in measuring and uncertainty in estimating
the safety of places of burial of radioactive wastes (PBRW). We take the word uncertainty to mean both the scatter
of calculation data and the lack of understanding of possible processes and parameters. The indicated uncertainty can
be analyzed qualitatively and quantitatively. In the case where the safety of a PBRW is analyzed qualitatively, it is
necessary to substantiate the model being used and the parameters being selected, consider an alternative model and
possible parameters, and, in certain cases, perform an alternative estimation of the safety of the PBRW. A quantitative
analysis of this uncertainty represents a probability prediction, in which random variables are used as model parameters
and possible distributions of these parameters are prescribed. In this case, a random sampling of parameters is per-
formed by the Monte Carlo method or the Latin-hypercube method and possible concentrations of radionuclides are
calculated for simple models. Complex models are not used as a rule because, in this case, it is necessary to perform
calculations for a large number of different variants and these calculations give probability distributions of radionuclide
concentrations. An example of such investigations is presented in [1].

According to the IAEA recommendations [2], the uncertainties in estimating the safety of a PBRW can be di-
vided into two types: the uncertainties of the first type are associated with the errors in determining the parameters of
radionuclides and their distributions, and the uncertainties of the second type are unknown parameters. In the latter
case, the parameters of radionuclides and their possible distributions are taken from literature sources or are selected
for other reasons.

The above-described method of determining the uncertainties in estimating the safety of a PBRW makes it
possible to obtain quantitative estimates of this safety, which is of great importance for making substantiated decisions
on the PBRW. In accordance with this method, the safety of a PBRW is estimated by the following scheme. With the
use of a model defining an actual PBRW most adequately, the most probable distribution of the activity of radionu-
clides in the environment is calculated. For the same model, the probability distributions of radionuclide concentrations
are calculated using a model for analysis of uncertainties. In this way, the probable properties of engineering barriers
and of a radioactive source can be estimated.

The migration of radionuclides in a porous medium was defined using a convective-diffusion model for the
liquid and solid phases of the skeleton of a rock [3]. According to this model, the concentration of a radioactive im-
purity is determined as
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At τ > u, Eq. (1) takes the form
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where erfcx = exp (−x2) erfc (x).
For a given distance from the radiocontamination source, the time of attainment of a maximum concentration

of radionuclides is determined from the condition 
∂S

∂τ
 = 0. Then, taking into account (1), we obtain
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The solutions of the problem being considered, obtained for definite parameters, determine the zone of influ-
ence of a radioactive source. This zone is determined by the distance from the radioactive source at which the maxi-
mum concentration of radionuclides in an aqueous solution corresponds to the Republican Admissible Levels for these
radionuclides. Thus, the problem is reduced to the solution of the transcendental equation (3) (the values of S are cal-
culated by (1) with respect to τ at a definite value of β and different values of u).

The above-described model can be used for defining the processes occurring in the environment. To perform
calculations with this model, it is necessary to know a large number of parameters characterizing the environment.
Every so often it is impossible to obtain complete information on these parameters and the parameters themselves can
change in wide ranges depending on the state of a natural object. For the model being considered, such parameters are
ρ, Kd, n, Deff, and V. The coefficient of radioactive decay λ of radionuclides is assumed to be constant.

In the case where the probability approach is used, each parameter appearing in formula (3) is assumed to be
a random variable and the quantities Smax and τmax are considered as functions of these variables. The main difference
of the probability model from the determinate model is that the determinate model makes it possible to determine
unique values of Smax and τmax and the probability model gives a variety of possible values of these quantities.

Varying the initial data in the determinate model, one can obtain an interval of Smax and τmax values; how-
ever, it is impossible to determine the probability that "actual" values of Smax and τmax will fall in any interval. The
probability model allows one not only to obtain an interval of Smax and τmax values, but also to determine the prob-
ability that the "actual" values of Smax and τmax will fall in a definite interval. The most popular approach is the ap-
proach in which the less probable, the most probable, and the maximum possible values of parameters, the
characteristics of these parameters, and their probability distributions are determined on the basis of available a priori
information and experience. The probability characteristics obtained in this way are usually called the "subjective"
characteristics since they reflect the experience and preferences of an expert.

The problem being considered is usually solved using normal, log-normal, uniform, and triangular distributions
of parameters as well as the β-distribution with form parameters admitting the existence of the most probable value of
a parameter. When information making possible the estimation of the chances of obtaining any value of a parameter
from a given interval of its values is absent, a uniform distribution is used.

To determine the response of a model to the variations in its input parameters, it is necessary to analyze its
sensitivity. For the model being considered, the influence of the change in its input parameters on the values of Smax
and τmax is illustrated in Table 1. It is seen that this model is less sensitive to the changes in the parameters Deff and
n and is most sensitive to the changes in the parameters V, ρ, and Kd. In the case where the errors in the initial data
are known, the standard uncertainty ∆Smax is calculated by the formula

∆Smax = 
dS
dXj

 ∆Xj . (4)

For the model selected, the influence of the errors in the initial data on the calculations of Smax can be de-
termined by the following formulas:
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The simulation of the processes being considered by the Monte Carlo method allows one to construct a
mathematical model for Smax and τmax with indeterminate parameters. Knowing the probability distributions of the
model parameters and the relations between them, we can determine the distributions of Smax and τmax. The Monte
Carlo method is realized with the use of special mathematical packages (e.g., Microsoft Excel, Matlab, Statistica, and
others packages). The indicated simulation represents a series of numerical experiments making possible the obtaining
of empirical estimates of the influence of different initial quantities on the results dependent on them.

In the general case, a simulation experiment includes the following stages:
1) the relations between the input and output parameters of a model are represented in the form of mathemati-

cal equations or inequalities;

TABLE 1. Change in the Input Parameters of a Model in the process of Calculating Smax and τmax

Change
in parameters

Input parameters

ρ Kd n Deff V

Smax

–40 0.0087 0.0087 0.0016 0.0016 0.00012
–30 0.0062 0.0062 0.0016 0.0015 0.00022
–20 0.0042 0.0042 0.0016 0.0015 0.00041
–10 0.0026 0.0026 0.0015 0.0015 0.00078

0 0.0015 0.0015 0.0015 0.0015 0.0015
10 0.00081 0.00081 0.0014 0.00147 0.0027
20 0.00044 0.00044 0.0014 0.00145 0.0044
30 0.00024 0.00024 0.00136 0.00144 0.0067
40 0.00013 0.00013 0.0013 0.0014 0.0096

τmax

–40 192.44 192.44 261.08 263.10 363.10
–30 206.19 206.19 261.58 263.22 338.67
–20 222.19 222.19 262.15 263.33 313.92
–10 241.02 241.02 262.79 263.43 288.87

0 263.52 263.52 263.52 263.52 263.52
10 288.16 288.16 264.29 263.58 240.24
20 312.69 312.69 265.02 263.61 220.68
30 337.11 337.11 265.72 263.62 204.02
40 361.43 361.43 266.39 263.59 189.66

1166



2) the probability distributions of the key parameters of the model are determined;
3) the computer simulation of the key parameters of the model is performed;
4) the main characteristics of the distributions of the input and output parameters are calculated;
5) the results obtained are analyzed and a decision is made on the basis of this analysis.
The results of the above-described experiment can be supplemented with statistical-analysis data used for con-

struction of prediction models. This complex analysis allows one to obtain the probability distribution of possible val-
ues of Smax and τmax.

In the simulation method, the first step is determination of the distribution function of each variable influenc-
ing the values of Smax and τmax. Let us consider the case where the uncertainty in determining the input parameters
of the model is maximum. In this case, it is practically impossible to determine the most probable values of parame-
ters from the prescribed interval of their minimum and maximum values, and the uniform distribution is used as the
approximate distribution. By way of example, we will simulate the migration of the 90Sr radionuclide in a system with
the following parameters: ρ = 1.75–2.1 kg/cm3, Kd = 7–8.4, n = 0.35–0.42, V = 2.5–3 m/g, and Deff = 0.4–0.48 m2/g.
The radioactive-decay constant λ of this radionuclide is equal to 0.024.

Random numbers were obtained using the function of generation of a sample of uniformly distributed Latin-
hypercube numbers from the Matlab package containing 500 values for each model parameter. A program for solving
the transcendental equation (3) for determining the values of Smax and τmax at a definite distance from a radiocontami-
nation source has been developed in Microsoft Excel. This program allows one to perform calculations for any sample
of random model parameters. The statistical processing and simulation of the distributions of the Smax and τmax values
obtained for the distances 10, 30, 50, 70, and 80 m from the radiocontamination source were performed using the
XLSTAT program integrated into Microsoft Excel.

The primary processing of the data obtained is usually performed for the purpose of determining a law that
would define the distribution of the random model values of Smax and τmax most adequately. The correspondence of
the experimental distribution to the theoretical one is verified with the use of different goodness-of-fit tests. This veri-
fication is necessary to be certain that the theoretical model is not contrary to the data obtained and its use did not
lead to the appearance of large errors in the probability calculations. The uniform distribution was used as the approxi-
mate distribution.

The χ2 and Kolmogotorv–Smirnov criteria were used for verification of the correspondence of the empirical
distribution function obtained to the theoretical one. The comparison of the experimental distributions with the corre-

TABLE 2. Comparison of the Main Parameters of a Model Determined Experimentally (Numerator) and the Corresponding
Theoretical Distributions (Denominator) for ln Smax and τmax 

Distance,  m
Average value Dispersion Asymmetry Excess

ln Smax τmax ln Smax τmax ln Smax
∗) τmax

∗) ln Smax
∗∗) τmax

∗∗)

10
−1.6243
–1.6244

63.98
63.97

0.00710
0.00707

10.01
9.97

0.00364 –0.0097 –1.2076 –1.2075

30
–4.4083
−4.4086

176.97
176.95

0.05041
0.05023

75.77
75.51

0.00399 –0.0086 –1.2075 –1.2075

50
−7.1330

−7.1335
288.13
288.10

0.13065
0.13020

200.58
199.90

0.00403 –0.0082 –1.2075 –1.2075

70
−9.8349

−9.8356
398.61
398.58

0.24717
0.24633

383.95
382.59

0.00402 –0.0079 –1.2075 –1.2075

80
−11.1807

−11.1815
453.71
453.68

0.31893
0.31785

497.55
495.98

0.00401 –0.0074 –1.2075 –1.2075

∗)Theoretical distribution of ln Smax = 0 and τmax = 0.
∗∗)Theoretical distribution of ln Smax = −1.2 and τmax = −1.2.
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sponding approximation distributions, performed with the use of the indicated criteria, has shown that the distribution
of the Smax values is not uniform. Then we investigated samples of ln Smax and τmax values. For the first quantity, the
Kolmogorov–Smirnov criterion (the maximum difference between the empirical and postulated distribution functions)
calculated at different distances from the radiocontamination source is equal to 0.004543–0.004650; its critical value
falls within the interval 0.1016–0.1040. The two-sample significance p-level is equal to unity at a 95% reliability. The
calculated χ2 criterion is equal to 0.32–0.4 (its critical value is 27.587) at a one-sample significance p-level equal to
unity at a 95% reliability. Thus, there are no differences between the theoretical uniform distribution and the experi-
mental distribution obtained for ln Smax.

For a sample of τmax, the Kolmogorov–Smirnov criterion calculated at different distances from the radiocon-
tamination source is equal to 0.005224–0.004439; its critical values falls within the interval 0.1168–0.0993. The two-
sample significance p-level is also equal to unity at a 95% reliability. The calculated χ2 criterion is equal to 0.64–0.80
(its critical value is 27.587) at a one-sample significance p-level equal to unity at a 95% reliability. The theoretical
uniform distribution was identical to the experimental distribution of the τmax values. For comparison, the main pa-
rameters of the experimental and theoretical distributions are presented in Table 2.

Thus, the analysis of the proper statistics approximating the experimental distributions of the Smax and τmax
values has shown that, for the above-described model of radionuclide migration in a porous medium, the distribution
of the ln Smax and τmax values at all distances from the radiocontamination source is most adequately defined by the
normal law.

An analogous approach can be used for solving the inverse problem on determination of errors in the experi-
mentally determined input parameters of a model.

NOTATION

C, specific activity of a radionuclide in the liquid phase, Bq/liter; C0, initial specific activity of the radionu-

clide in the liquid phase, Bq/liter; D, dispersion coefficient in porous media, m2/g; Dm, coefficient of molecular diffu-

sion in the skeleton of a rock, m2/g; Deff = 



D + 

ρKdDm

nψ



 , effective diffusion coefficient, m2/g; Kd, distribution

coefficient of a water-soluble compound, cm3/kg; n, active porosity of the rock skeleton, m3/m3; R = 



1 + 

ρKd

n



, retro-

gradation coefficient; S = C ⁄ C0, dimensionless specific activity; t, time, year; u = zV/(nDeff), dimensionless coordinate;

V, velocity of flow, m/year; x, parameters of functions; Xj, parameters of a model; z, coordinate in the direction of liq-

uid motion; β = λn2RDeff/V
2, dimensionless constant of radionuclide decay, λ, constant of radionuclide decay, 1/g; ρ,

density of the rock skeleton, kg/cm3; τ = tV2/(Rn3Deff), dimensionless time; ψ, twisting coefficient characterizing the

heterogeneity of the porous medium. Subscripts: d, distribution; eff, effective; 0, initial; max, maximum; m, molecular.
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